

PM SHRI STUDY MATERIAL (2025-26)
CLASS-12TH
CHEMISTRY

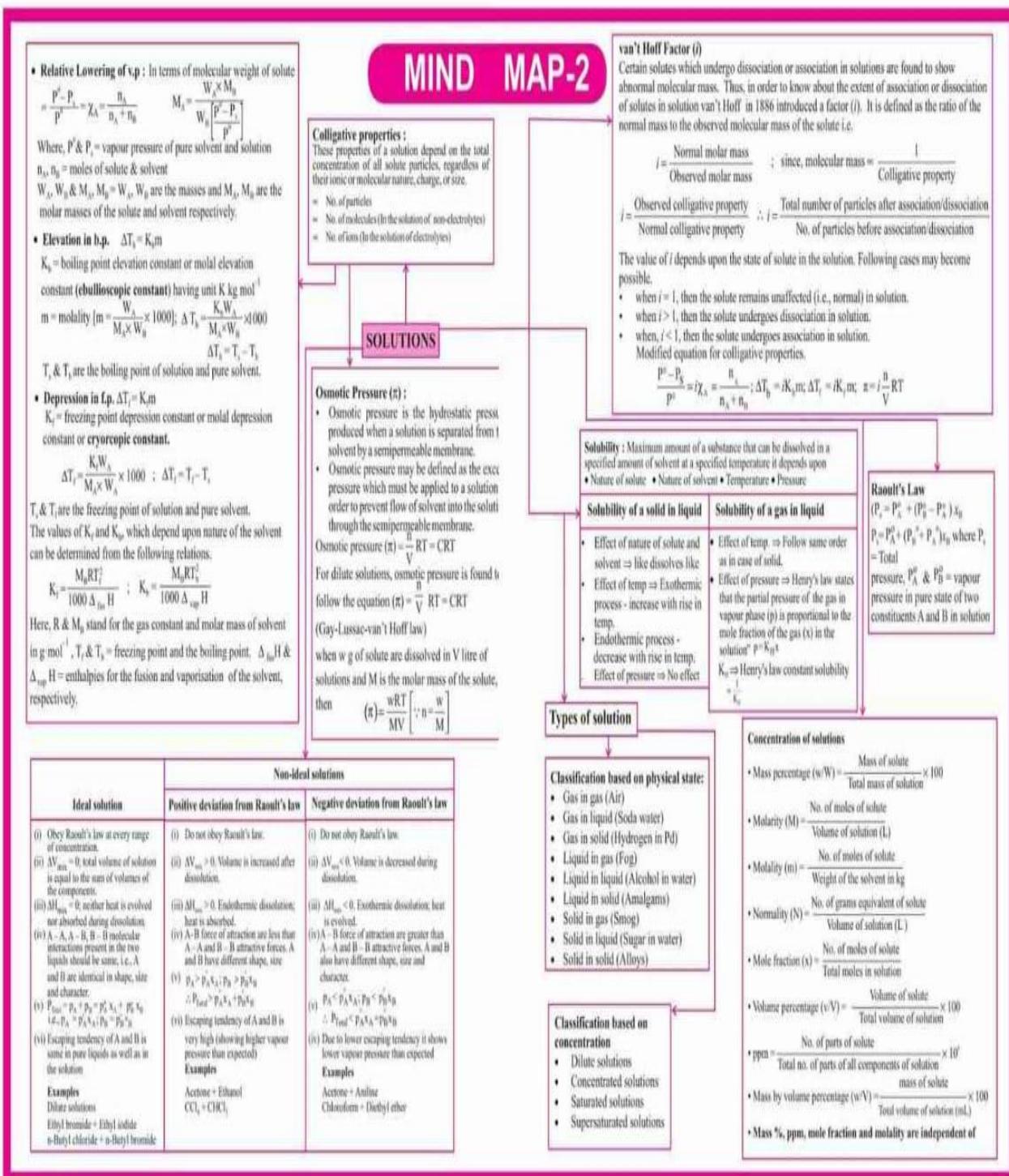
INDEX

CHAPTER1. SOLUTION	2-5
CHAPTER2. ELECTROCHEMISTRY	6-7
CHAPTER3. CHEMICAL KINETICS	8-10
CHAPTER4. d AND f BLOCK ELEMENTS	10-11
CHAPTER5. COORDINATION COMPOUNDS	11-12
CHAPTER6. HALOALKANESAND HALOARENES	13-14
CHAPTER7. ALCOHOL, PHENOL AND ETHERS	14-15
CHAPTER8. ALDEHYDE, KETONE AND CARBOXYLIC ACIDS	15-16
CHAPTER9. ORGANIC COMPOUNDS CONTAINING N-COMPOUNDS	17-18
CHAPTER10. BIOMOLECULES	19-23
SAMPLE PAPER	24-25

Sr. No.	PREPARED BY	SCHOOL
1	JAGJIT SINGH	PM SHRI GSSS KAMAH DEV (HSP.)
2	RAMAN DEEP SINGH	PM SHRI GSSS DATARPUR (HSP.)
3	INDU BALA	PM SHRI GSSS TALWARA SEC 1 (HSP.)
4	NEERAJ SINGH KANWER	PM SHRI GSSS MAHILPUR BOYS (HSP.)

Under the guidance of :

Mr. Suraj Parkash
PDM Chemistry Hsp.
GSSS Kamahi Devi


Under the Supervision of

Ms. Jasvinder Kaur
Asst. Project Director Sen.Sec.

CHAPTER – SOLUTION

MIND MAP

2

1. Henry's Law: Henry's Law states that the partial pressure (P) of a gas in the vapor phase is directly proportional to the mole fraction (x) of that gas in the solution.
2. Raoult's Law : Raoult's Law describes how the vapor pressure of a solvent is affected when a non-volatile solute is added. The law states that the relative lowering of the vapor pressure of the solvent is directly proportional to the mole fraction of the solute in the solution.
3. Colligative Properties : Colligative properties are characteristics of solutions that depend on the number of solute particles (molecules or ions) in a given amount of solvent, rather than on the chemical nature of the solute

Quick Formulae

$$1. \text{ Mole fraction (x)} = \frac{\text{Moles of solute}}{\text{Total moles of solute}}$$

$$1. \text{ Molarity (M)} = \left[\frac{\text{Moles of Solute}}{\text{Vol.of Solution in mL}} \right] \times 1000$$

$$2. \text{ Molality (m)} = \left[\frac{\text{Moles of Solute}}{\text{Vol.of Solvent in grams}} \right] \times 1000$$

$$3. \text{ Normality (N)} = \left[\frac{\text{Equiv.of solute}}{\text{Vol.of solution in mL}} \right] \times 1000$$

$$4. \text{ Henry's Law} = (m = K \cdot p) \text{ or } p = \frac{1}{K} \cdot x \text{ or } p = K_H \cdot x$$

5. Henry Law gives relationship between solubility of gas in a liquid and pressure
6. Raoult's Law

$$p_A = p_A^0 \cdot x_A \text{ and } p_B = p_B^0 \cdot x_B$$

$$\text{and } p = p_A + p_B$$

$$7. \text{ Ideal Solution} = \text{a) obeys Raoult's Law} \quad \text{b) } \Delta_{\text{mix}}H \text{ and } \Delta_{\text{mix}}V = 0$$

$$8. \text{ Non-Ideal Solution} = \text{a) do not obey Raoult's Law} \quad \text{b) } \Delta_{\text{mix}}H \text{ and } \Delta_{\text{mix}}V \neq 0$$

9. Relative Lowering of Vapour Pressure

$$\frac{p_A^0 - p_A}{p_A^0} = \frac{n_2}{n_1 + n_2} \text{ and } M_B = \frac{w_B \times M_A}{w_A \left(\frac{p_A^0 - p_A}{p_A^0} \right)}$$

10. Elevation in boiling point

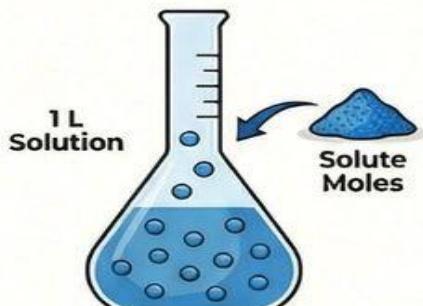
$$M_B = \frac{K_b \times w_B \times 1000}{\Delta T_B \times w_A}$$

11. Depression in Freezing point

$$M_B = \frac{K_f \times w_B \times 1000}{\Delta T_f \times w_A}$$

$$12. \text{ Osmotic pressure} \quad \pi = cRT = \frac{n}{V}RT \text{ and } M_B = \frac{w_B RT}{\pi V}$$

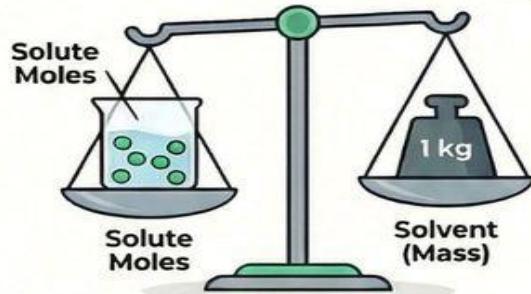
13. Van't Hoff factor


$$i = \frac{\text{Normal molar mass}}{\text{Observed molar mass}} = \frac{\text{Observed colligative property}}{\text{Normal colligative property}}$$

A Quick Guide to Chemical Concentration

MOLARITY (M)

Moles of Solute per Liter of Solution

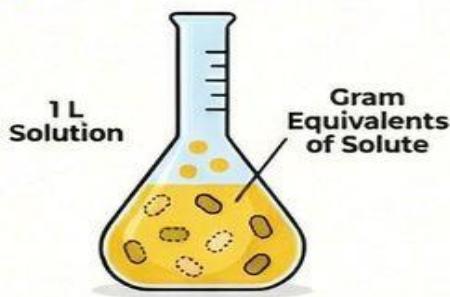

$$M = \frac{\text{Moles of Solute}}{\text{Volume of Solution (L)}}$$

Temperature Dependent:
Because solution volume can change with temperature.

MOLALITY (m)

Moles of Solute per Kilogram of Solvent

$$m = \frac{\text{Moles of Solute}}{\text{Mass of Solvent (kg)}}$$



Temperature Independent:
Because mass does not change with temperature.

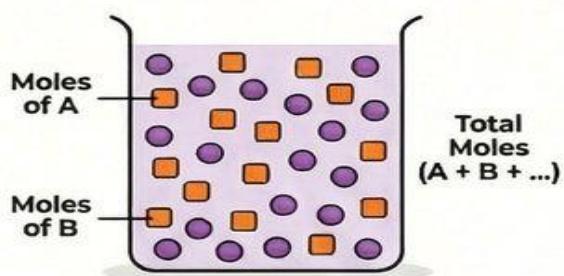
NORMALITY (N)

Gram Equivalents of Solute per Liter of Solution

Step 1 Calculate Molar Mass

Step 2 Find Equivalent Mass (Molar Mass / n-factor)

Step 3 Calculate Gram Equivalents (Given Mass / Equivalent Mass)


$$N = \frac{\text{Gram Equivalents of Solute}}{\text{Volume of Solution (L)}}$$

Temperature Dependent:
Because it is based on the volume of the solution.

MOLE FRACTION (x)

Ratio of Moles of One Component to Total Moles

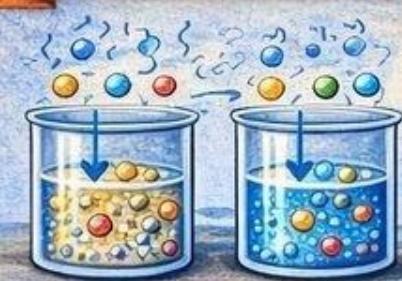
$$X_a = \frac{\text{Moles of A}}{\text{Moles of A} + \text{Moles of B} + \dots}$$

Sum of All Mole Fractions is Always 1 ($X_a + X_e + \dots = 1$)

Temperature Independent:
Because it is based on moles, which relate to mass.

SOLUTION LAWS

Henry's Law


$$C = k_H P$$

C = Concentration of Gas in Liquid

k_H = Henry's Law Constant

P = Partial Pressure of Gas

Raoult's Law

$$P_A = P_A^0 X_A$$

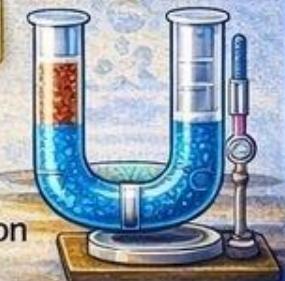
P_A = Vapor Pressure of Component A in Solution

P_A^0 = Vapor Pressure of Pure Component A

Dalton's Law of Partial Pressures

$$P_{\text{total}} = P_a + P_b + P_c$$

In a mixture of gases, the total pressure is the sum of the partial pressures of each gas.



Osmotic Pressure

$$\pi = CRT$$

π = Osmotic Pressure

C = Molar Concentration of Solute

CHAPTER – ELECTROCHEMISTRY

1. An electrochemical cell consists of two metallic electrodes dipped in electrolytic solutions. The cells are of two types: (a) Electrolytic cells (b) Galvanic cells
2. A galvanic cell consists of two half cells. Each half cell contains an electrolytic solution and a metallic electrode. The electrode at which oxidation takes place is called an anode and the electrode at which reduction takes place is called the cathode. The half-cells are separated from each other by means of a porous pot or a salt bridge.
3. Electrical energy = Emf (volts) x Quantity of electricity (coulombs)
4. If E^0_{cell} is positive, ΔG° would be negative and reaction would be spontaneous. If E^0_{cell} is negative, ΔG° would be positive and the reaction would be non-spontaneous.
5. Resistivity is defined as the resistance of a conductor of 1cm length and having an area of cross-section equal to 1cm².

IMPORTANT FORMULAE

1. Resistance

$$R = \rho \frac{l}{a}$$

2. Conductance

$$G = \frac{1}{R}$$

3. Conductivity

$$K = \frac{1}{\rho} \quad K = \frac{1}{R} \frac{l}{a}$$

Here $\frac{l}{a}$ is called cell constant (G^*), $K = G \times G^*$

4. Molar Conductivity

$$\lambda_m = \frac{k \times 1000}{C_m}$$

Unit S cm² mol⁻¹

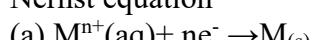
5. Equivalent Conductivity

$$\lambda_{eq} = \frac{k \times 1000}{C_{eq}}$$

Unit S cm² (g equiv)⁻¹ (or) Ohm⁻¹ cm² (g equiv)⁻¹

6. Degree of dissociation

$$\alpha = \frac{\lambda_m^c}{\lambda_m^0}$$


7. Kohlrausch law

$$\lambda_m^0 = v_+ \lambda_+^0 + v_- \lambda_-^0$$

8. EMF (Standard EMF)

$$E^0_{\text{cell}} = E^0_{\text{cathode}} - E^0_{\text{anode}}$$

9. Nernst equation

$$E (M^{n+}/M) = E^0 (M^{n+}/M) - \frac{0.059}{n} \log \frac{[M]}{[M^{+n}]}$$

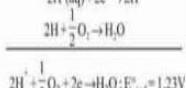
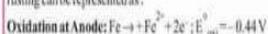
$$E_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.059}{n} \log \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

where n is = the number of electrons transferred

10. Equilibrium constant from Nernst equation

$$E_{\text{cell}} = \frac{0.059 \log K_c}{n} \text{ (at 298 K)}$$

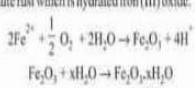
11. Standard change in Gibb's energy (ΔG^0) in an electrochemical cell.



$$\Delta G^0 = -nFE_{\text{cell}}^0$$

$$\Delta G^0 = -RT \ln K_c$$

$$= -2.303 RT \log K_c$$

In corrosion, a metal is oxidised by loss of electrons to oxygen and forms metal oxide. Corrosion of iron (which is commonly known as rusting) occurs in presence of water and oxygen (air).


Rusting of Iron: According to electrochemical theory, rusting can be represented as:

Overall reaction of corrosion cell:

The ferrous ions so formed move through water and come at the surface of iron object where these are further oxidised to ferric state by atmospheric oxygen and constitute rust which is hydrated iron (III) oxide.

Prevention of Corrosion

- The metal surface is coated with paint which keeps it out of contact with air, moisture etc.
- By applying film of oil and grease on the surface of the iron tools and machinery
- The iron surface is coated with non-corroding

Faraday's First Law: When an electric current is passed through an electrolyte, the amount of substance deposited or liberated at an electrode is proportional to the quantity of electric charge passed through the electrolyte.

If W be the mass of the substance deposited by passing Q coulombs of charge, then according to the law, we have the relation

$$W = Q$$

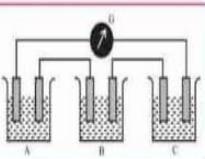
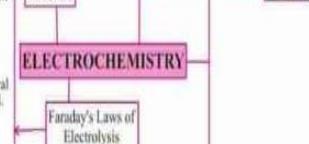
A coulomb is the quantity of charge when a current of one ampere is passed for one second.

$$Q = \text{current in amperes} \times \text{time in seconds} = I \times t$$

$$W = Z \times I \times t$$

where Z is a constant, known as electro-chemical equivalent, and is characteristic of the substance deposited.

Electro-chemical equivalent (Z) =



$$\text{equivalent wt. of element} \\ 96500$$

Faraday's Second Law: It states that when same quantity of electricity is passed through different electrolytes, then the quantity of deposit is directly proportional to respective equivalent weight. (Equivalent wt. of electrolytes).

$$W \propto E$$

$$\frac{W_A}{E_A} = \frac{W_B}{E_B} = \frac{W_C}{E_C}$$

Electrochemical series: Arrangement of elements in order of increasing value of E_{red} . Reducing nature decreases from top

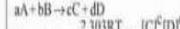
MIND MAP-3

Regardless whether a cell is a voltaic or an electrolytic cell,
 — The anode is the electrode at which oxidation occurs
 — The cathode is the electrode at which reduction occurs

Voltile Cell	Electrolytic cell
Anode: Oxidation	Oxidation
Cathode: Reduction	Reduction
Positive (+) terminal	Negative (-) terminal

• Electrode potential

$$E_{\text{cell}} = E_{\text{an}}^0 - E_{\text{cat}}^0$$


$$\text{For SHE, } E_{\text{an}}^0 = 0$$

• Nernst equation:

$$E = E_{\text{an}}^0 - \frac{2.303RT}{nF} \log \frac{1}{[M^{n+}]^c}$$

• For reaction:

$$E_{\text{cell}} = E_{\text{an}}^0 - \frac{2.303RT}{nF} \log \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$$\text{At equilibrium } E_{\text{cell}} = 0$$

$$E_{\text{cell}} = \frac{2.303RT}{nF} \log K_c$$

$$\Delta G = -nFE_{\text{cell}} \text{ or } \Delta G = -nFE_{\text{cell}}^0$$

Conductance of Electrolytic Solutions:

Name of cell/Battery	Anode (+)	Cathode (-)	Electrolyte	Reactions at electrodes	E_{cell}
• Dry cell (primary cell)	Zn container	Graphite rod	Powdered MnO_2 + Paste of NH_4Cl + ZnCl_2	Anode: $\text{Zn}(s) \rightarrow \text{Zn}^{2+}(aq) + 2e^-$ Cathode: $\text{NH}_4^+ + \text{OH}^- \rightarrow \text{NH}_3 + \text{H}_2\text{O} + e^-$ $\text{MnO}_2 + 2\text{NH}_4^+ + 2\text{OH}^- + e^- \rightarrow \text{MnO}_2 \cdot \text{NH}_3 \cdot \text{H}_2\text{O}$	1.25 to 1.3 V
• Mercury cell (primary cell)	Zn-Hg amalgam	Paste of HgO and C	Paste of ZnO	Anode: $\text{Zn}(l) \rightarrow \text{Zn}^{2+}(aq) + 2e^-$ Cathode: $\text{Hg}(l) + 2e^- \rightarrow \text{Hg}(l) + 2\text{OH}^-$	1.35 V
• Lead storage battery (secondary cell)	Pb	Pb + PbO_2	38% by mass H_2SO_4 + PbO_2 + SO_4^{2-} (d = 1.26 g/cm ³)	Anode: $\text{Pb}(s) + \text{SO}_4^{2-}(aq) + 2e^- \rightarrow \text{PbO}_2(s) + \text{SO}_4^{2-}(aq) + \text{H}_2\text{O}$ Cathode: $\text{PbO}_2(s) + \text{SO}_4^{2-}(aq) + 2e^- + 4\text{H}^{+}(aq) \rightarrow \text{PbSO}_4(s) + \text{H}_2\text{O}$ On applying a potential slightly greater than the potential of battery, battery can be recharged.	12 V consists of 6 cell each producing 2 V
• Ni-Cd Secondary cell Or Ni-Cd cell (Rechargeable)	Cd	NiO_2	Moist KOH	Anode: $\text{Cd}(s) + 2\text{OH}^{-(aq)} \rightarrow \text{Cd}(\text{OH})_2(s) + 2e^-$ Cathode: $\text{NiO}_2(s) + \text{SO}_4^{2-}(aq) + 2\text{H}_2\text{O} + 2e^- \rightarrow \text{Ni}(\text{OH})_2(s) + \text{SO}_4^{2-}(aq) + 2\text{H}_2\text{O}$	1.4 V
• Fuel cell (H ₂ -O ₂)	Porous carbon containing catalyst finely divided Pt and Pd	Porous carbon containing catalyst finely divided Pt and Pd	Concentrated NaOH solution	Anode: $2\text{H}_2(g) + 4\text{OH}^{-(aq)} \rightarrow 4\text{H}_2\text{O}(l) + 4e^-$ Cathode: $\text{O}_2(g) + 2\text{H}_2\text{O}(l) + 4e^- \rightarrow 4\text{OH}^{-(aq)}$	0.09 V

Plot of Λ_n against $C^{1/2}$ is a straight line with intercept equal to Λ_n^* and slope equal to $4\Lambda_n^*$.

Thus, Λ_n decreases linearly with \sqrt{C} . When $C = 0$, $\Lambda_n = \Lambda_n^*$ and Λ_n^* can be determined experimentally.

• For weak electrolytes, Λ_n increases as C decreases but does not reach a constant value even at infinite dilution. Hence, there Λ_n^* cannot be determined experimentally.

• Kohlrausch's Law:

$$\Lambda_n = \Lambda_n^* + \lambda^*$$

Where λ^* is the limiting equivalent conductivity of the cation and λ^* is the limiting equivalent conductivity of the anion. These contributions are called limiting equivalent conductances at infinite dilution. The above equation is, however, correct only for binary electrolyte like NaCl , MgSO_4 etc.

Applications of Kohlrausch's Law:

• Calculation of Molar Conductivity at Infinite Dilution for Weak Electrolytes:

In order to calculate Λ_n^* or Λ_n^* of a weak electrolyte say CH_3COOH , we determine experimentally Λ_n values of the strong electrolyte KCl or NaCl and Λ_n^* values of the strong electrolyte HCl .

$$\Lambda_{\text{HCl}}^* = \Lambda_{\text{KCl}} + \lambda^* \quad \text{--- (i)}$$

for strong electrolytes:

$$\Lambda_{\text{HCl}}^* = \Lambda_{\text{NaCl}} + \lambda^* \quad \text{--- (ii)}$$

$$\Lambda_{\text{HCl}}^* = \Lambda_{\text{KCl}} + \lambda^* \quad \text{--- (iii)}$$

$$\Lambda_{\text{HCl}}^* = \Lambda_{\text{NaCl}} + \lambda^* \quad \text{--- (iv)}$$

$$\therefore \text{eqn (ii)} + \text{eqn (iii)} - \text{eqn (iv)} = \text{eqn (i)}$$

$$\text{i.e., } \Lambda_{\text{NaCl}} = \Lambda_{\text{HCl}}^* - \Lambda_{\text{KCl}}^* = \Lambda_{\text{HCl}}^* - \Lambda_{\text{NaCl}}$$

• Calculation of the Degree of Dissociation :

Λ_n^* is the molar conductivity of a solution at any concentration C and Λ_n the molar conductivity at infinite dilution (i.e., zero concentration), we will have — no. of dissociated cations : no. of total ions present

$$\text{dissociation } (\alpha) = \frac{\Lambda_n^*}{\Lambda_n}$$

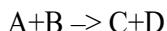
• Calculation of Dissociation Constant of a Weak Electrolyte :

$$K_a = \frac{\alpha^2}{1 - \alpha}$$

Conductance of Electrolytic Solutions:

- Conductance (G) = $\frac{1}{\text{Resistance}}$
Unit: ohm⁻¹ or Siemens
- Specific conductivity (κ) = $G / (l \text{ cm}^{-1})$ = cell constant
Unit = ohm⁻¹ cm⁻¹ or S cm⁻¹ a⁻¹
- Molar conductance (Λ_n) = $\frac{1000 \kappa}{M}$
Unit = S cm² mol⁻¹
- Equivalent conductance (Λ_{eq}) = $\frac{1000 \kappa}{N}$
Unit = cm² ohm⁻¹ g⁻¹

Conductance (G), molar conductance (Λ_n) and equivalent conductance (Λ_{eq}) increase with dilution where as specific conductance (κ) decrease with dilution.


Effect of concentration on Λ_n :

- For strong electrolytes, Λ_n increases slowly with dilution and can be represented by the equation: $\Lambda_n = \Lambda_n^* - AC^{1/2}$ (Debye-Hückel-Onsager equation)

CHAPTER – CHEMICAL KINETICS

Important Key Points

1. Rate of reaction is the change in concentration of reactants or products per unit time. For a general reaction,

The rate of reaction

$$= -\frac{\Delta[A]}{\Delta t} = -\frac{\Delta[B]}{\Delta t} = +\frac{\Delta[C]}{\Delta t} = +\frac{\Delta[D]}{\Delta t}$$

The negative sign indicates that the concentration is decreasing with time. Unit for reaction rate is mol L⁻¹s⁻¹.

2. A rate law expresses a mathematical relationship between the reaction rate and the molar concentration of one or more reactants.

$$\text{Rate} = k[A]^x[B]^y$$

$$-\frac{d[R]}{dt} = k[A]^x[B]^y$$

Where x and y are determined experimentally and represent the order of reaction with respect to A and B respectively, x + y represents the overall order of reaction.

3. Rate constant is the rate of reaction when the concentration of each of reacting species is unity. It is represented by 'k' It is also called specific reaction rate or velocity constant of reaction.

4. Order of reaction is defined as the sum of the exponents to which the concentration terms are raised in the rate equation (or rate law) of the reaction. It can be fraction, zero or any whole number.

5. Molecularity of reaction is defined as the number of reacting particles (atoms or molecules or any other species), which collides simultaneously to bring about the chemical change.

It is a theoretical concept. Its value is always a whole number. It is never more than three. It cannot be zero.

Important Formulae :

• Rate of reaction

Rate of reaction

For a reaction,
 $aA + bB \rightleftharpoons cC + dD$

rate = $-\frac{1}{a} \frac{d[A]}{dt} = -\frac{1}{b} \frac{d[B]}{dt}$

$= \frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt}$

► -ve sign is used for conc. of reactants.

Order of a reaction

$$\text{Rate} = k[A]^\alpha[B]^\beta[C]^\gamma$$

$$\text{Order} = \alpha + \beta + \gamma$$

• Order Units of k Integrated rate equation Half life period

Zero $\text{mol L}^{-1}\text{s}^{-1}$ $[A] = -kt + [A]_0$ $\Rightarrow [A]_0 / 2k$

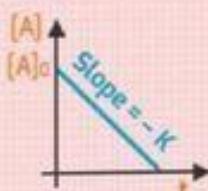
First s^{-1} $\log [A] = -kt/2.303 + \log [A]_0$ $\Rightarrow 0.693/k$

Second $\text{L mol}^{-1}\text{s}$ $1/[A] = kt + 1/[A]_0$ $\Rightarrow 1/[A]_0$

• For nth order, units of k = $(\text{mol L}^{-1})^{1-n}\text{s}^{-1}$

Arrhenius Equation $K = Ae^{-E_a/RT}$

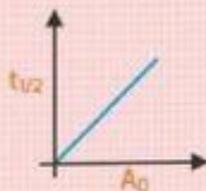
$$\log k_2/k_1 = E_a/2.303R [1/T_1 - 1/T_2]$$


Law of Mass Action

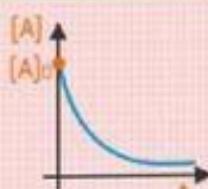
$$\text{rate} = k[A]^a[B]^b$$

ORDER OF REACTION

Zero Order Reactions


A zero order reaction has a constant rate that is independent of the concentration of the reactant(s); the rate law is simply.

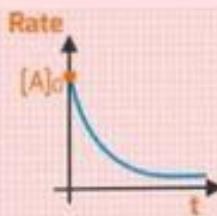
$$\text{Rate} = k$$


HALF LIFE ($t_{1/2}$)

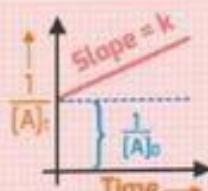
Time in which half of initial amount is left.

$$t_{1/2} = \frac{[A]_0}{2k}$$

First Order Reactions



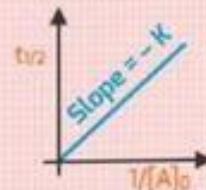
A first-order reaction is a reaction that proceeds at a rate that depends linearly on only one reactant concentration.


$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$$

HALF LIFE ($t_{1/2}$)

$$t_{1/2} = \frac{0.693}{k} \quad [A] = \frac{[A]_0}{2^n}$$

Second Order Reactions

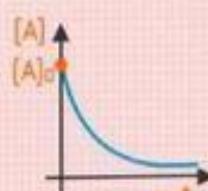


A chemical reaction in which the rate of the reaction is determined by the concentration of two chemical reactants involved or the square of the concentration of one chemical reactant.

$$k = \frac{1/[A] - 1/[A]_0}{t}$$

HALF LIFE ($t_{1/2}$)

$$t_{1/2} = \frac{1}{k[A]_0}$$

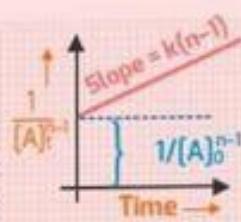


Pseudo first order reactions

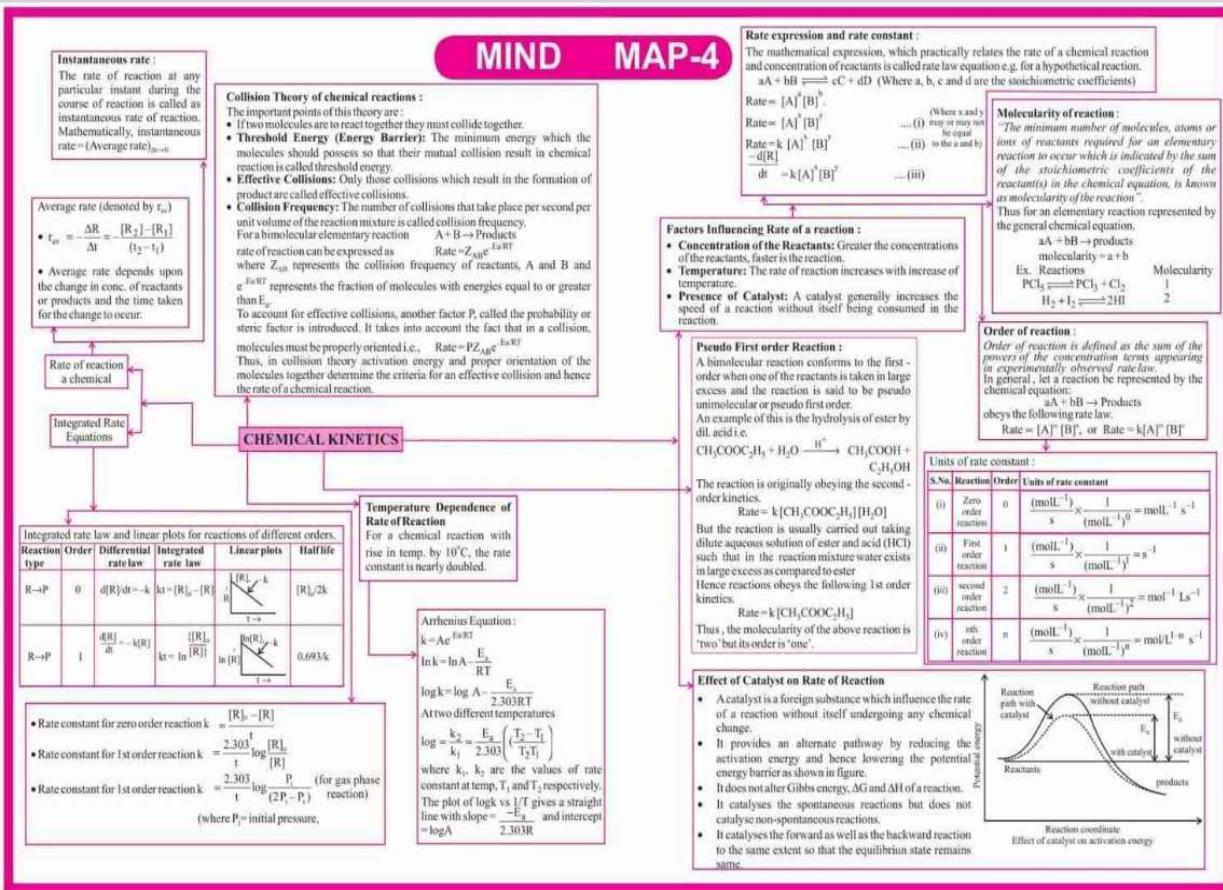
If the **concentration** of a reactant remains constant (because it is a catalyst or it is in great excess with respect to the other reactants), its concentration can be included in the rate constant, obtaining a **pseudo-first-order** (or occasionally **pseudo-second-order**) rate equation.

For example, the hydrolysis of sucrose in acid solution $r = k[\text{sucrose}]$. The true rate equation is third-order, $r = k[\text{sucrose}] [\text{H}^+] [\text{H}_2\text{O}]$; however, the **concentrations** of both the catalyst H^+ and the solvent H_2O are normally constant, so that the reaction is pseudo-first-order.

N^{th} order reactions



N^{th} order reaction is one which proceeds at the rate that depends on concentration of multiple reactants or on multiple steps.


$$\Rightarrow k = \frac{1}{(n-1)t} \left[\frac{1}{[A]_1^{n-1}} - \frac{1}{[A]_0^{n-1}} \right]$$

HALF LIFE ($t_{1/2}$)

$$t_{1/2} = \lim_{x \rightarrow n} \frac{2^{x-1}-1}{(x-1)k[A]_0^{x-1}}$$

MIND MAP-4

CHAPTER : COORDINATION COMPOUNDS

Quick Review

1. Addition compounds which retain their identity in solid as well as in the solution are called **complex compounds** or **coordination compounds**. e.g., $\text{K}_4[\text{Fe}(\text{CN})_6]$; $[\text{Cu}(\text{NH}_3)]\text{SO}_4$
2. Polydentate ligands which form closed ring with metal on coordination are called **chelate** ligands and the corresponding complexes are called chelates.
3. Total number of electrons present with the central metal after coordination is called **effective atomic number (EAN)**.


$$\text{EAN} = \text{Atomic number of central metal} - \text{Number of electrons lost during the formation of central metal ion} + \text{number of electrons gained by the metal ion ligands during the coordination.}$$
4. A complex which rotates the plane of polarized light either in clock wise or in anticlock wise direction are optically active. These complexes must be asymmetric and should not superimpose on its mirror image.
 - a. Clock wise rotation \rightarrow *Dextro complex*
 - b. Anti clock wise rotation \rightarrow *Laevo complex*

Optical isomerism is quite common in the octahedral complexes.

5. Geometry of the complexes is decided on the basis of the type of hybridization:

Sp	Linear	$[\text{Ag}(\text{NH}_3)_2]^+$
Sp^3	Tetrahedral	$[\text{Ni}(\text{CO})_4]; [\text{NiCl}_4]^{2-}; [\text{Zn}(\text{NH}_3)_4]^{2+}$
dsp^2	Square planar	$[\text{Cu}(\text{NH}_3)_4]^{2+}, [\text{Ni}(\text{CN})_4]^{2-}$
d^2sp^3	Inner orbital octahedral complex	$[\text{Fe}(\text{CN})_6]^{3-}, [\text{Cr}(\text{NH}_3)_6]^{3+}$
sp^3d^2	Outer orbital octahedral complex	$[\text{CoF}_6]^{3-}, [\text{Fe}(\text{H}_2\text{O})_6]^{3+}$

All octahedral complexes of $\text{Ni}^{2+}, \text{Cu}^{2+}, \text{Cu}^+, \text{Zn}^{2+}$ and Co^{2+} are outer octahedral complexes.

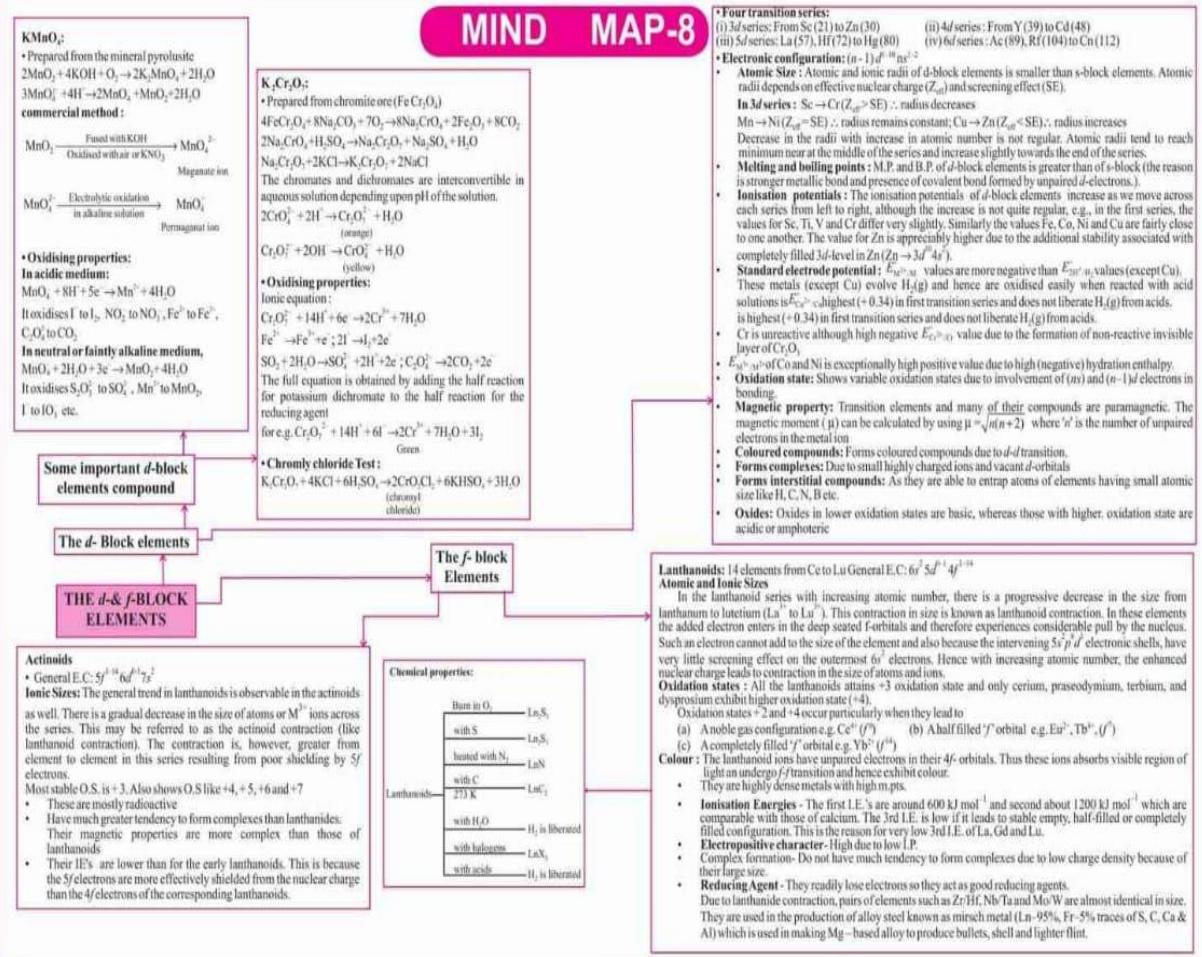
A central metal atom bonded to a group of polar molecules or ions is a metal complex.

If the complex bears a charge, it is a complex ion.

Compounds containing complexes are coordination compounds.

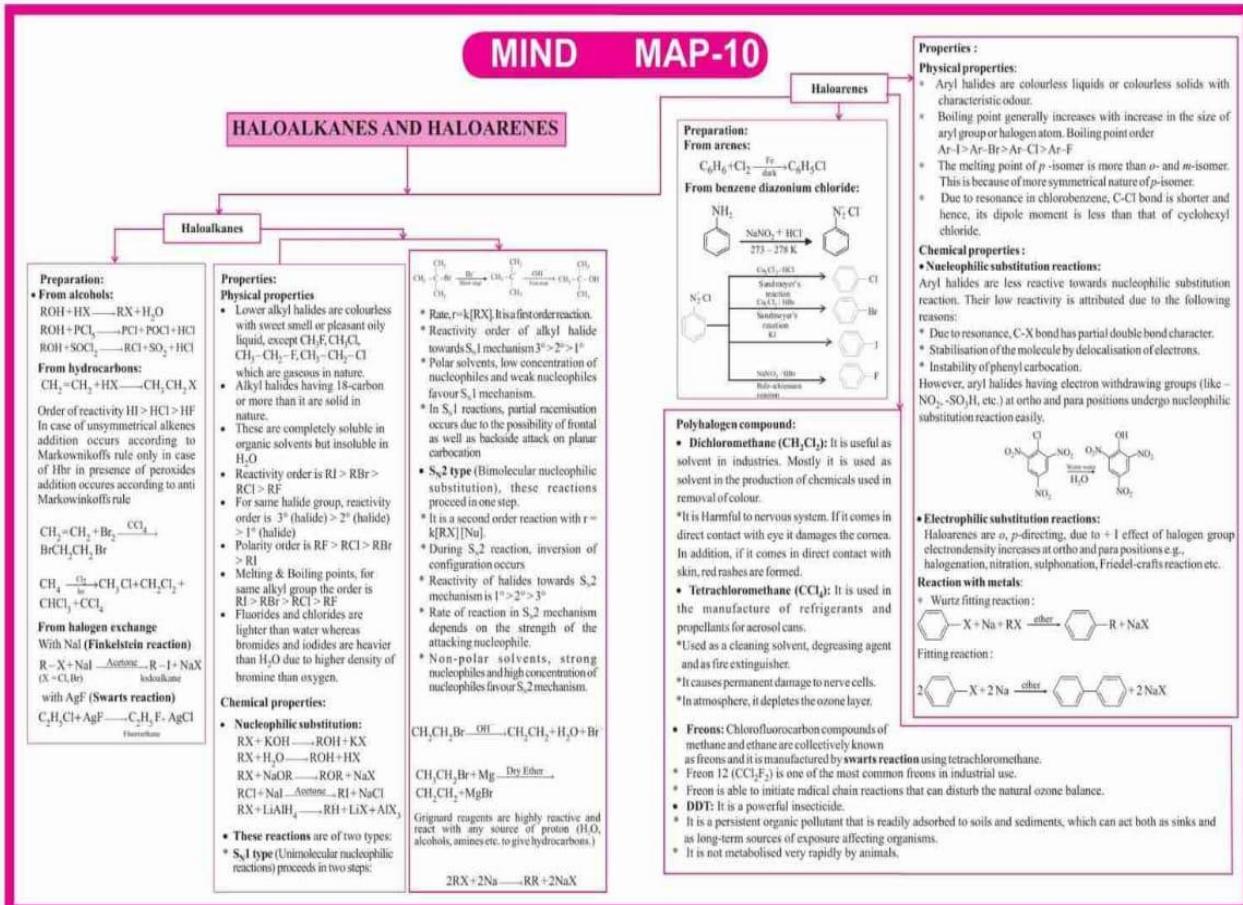
CHAPTER d AND f BLOCK ELEMENTS

D-Block Elements (Transition Metals)

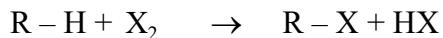

- Position: Groups 3-12, center of the periodic table.
- Filling Orbitals: $(n-1)d$ orbitals.
- Key Properties:
 - Variable Oxidation States: Due to involvement of $(n-1)d$ and ns electrons.
 - Color: Many compounds are colored (due to d-d transitions).
 - Paramagnetism: Presence of unpaired d-electrons.
 - Catalytic Action: Good catalysts (e.g., Fe, V, Ni).
 - Alloy Formation: Form alloys with other metals.
- Series: 3d (Sc-Zn), 4d (Y-Cd), 5d (La, Hf-Hg), 6d (Ac, Rf-Cn).
- Exceptions: Zn, Cd, Hg are not always considered true transition metals as they have full d^{10} shells in common states.

F-Block Elements (Inner Transition Metals)

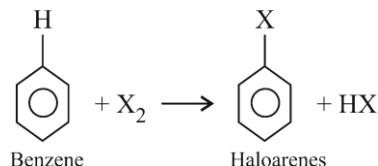
- Position: Two separate rows at the bottom (Lanthanides & Actinides).
- Filling Orbitals: 4f (Lanthanides) or 5f (Actinides) orbitals.
- Subgroups:
 - Lanthanides (4f): Elements Ce(58) to Lu(71).
 - Actinides (5f): Elements Th(90) to Lr(103) (many are radioactive).
- Key Properties:
 - Lanthanides: Similar chemical properties, used in magnets, lasers.
 - Actinides: Radioactive, important in nuclear energy (Uranium, Plutonium).


8

MIND MAP-8


CHAPTER HALOALKANE AND HALOARENES

10


A one-step reaction that occurs through a transition state. The nucleophile attacks the carbon attached to the halogen, replacing the halogen. SN2 reactions lead to a predictable configuration of the stereocenter

1. **Boiling Haloalkanes** : These are the organic compound which are formed by substituting the Hydrogen of corresponding alkane by a Halogen atom as

(alkane) (Haloalkane)

2. **Haloarenes** : These are the aromatic compound which are formed by substituting one or more hydrogen atom of benzene ring with Halogen atom as

3. Classification of Haloalkanes : These are of three types :

(a) 1° Haloalkanes : It is a Haloalkane in which the carbon which is attached to Halogen atoms attaches to one carbon atom only.

(b) 2° Haloalkanes : It is a Haloalkane in which the carbon which is attached to Halogen atom attaches to two alkyl group.

(c) 3° Haloalkanes : These are the Haloalkanes in which the carbon which is attached to Halogen atom attaches to three alkyl group.

4. SN1 Reaction

A two-step reaction that involves the formation of a carbocation. The halogen leaves the haloalkane, and the nucleophile attacks the positive charge on the carbon. SN1 reactions are faster than SN2 reactions.

SN2 Reaction

5. point orders

1. R-I > R - Br > R-Cl > R - F
2. $\text{CH}_3-(\text{CH}_2)_2-\text{CH}_2\text{Br} > (\text{CH}_3)_2\text{CHCH}_2\text{Br} > (\text{CH}_3)_3\text{CBr}$
3. $\text{CH}_3\text{CH}_2\text{CH}_2 > \text{CH}_3\text{CH}_2\text{X} > \text{CH}_3\text{X}$

6. Bond strength of haloalkanes decreases as the size of the halogen atom increases. Thus, the order of bond strength is $\text{CH}_3\text{F} > \text{CH}_3\text{Cl} > \text{CH}_3\text{Br} > \text{CH}_3\text{I}$.

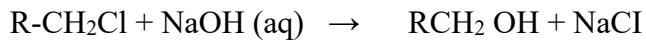
7. Dipole moment decreases as the electronegativity of the halogen decreases.

8. Haloalkanes though polar but are insoluble in water as they do not form hydrogen bonding with water.

9. Density order is $\text{RI} > \text{RBr} > \text{RCl} > \text{RF}$ (for the same alkyl group) $\text{CH}_3\text{I} > \text{C}_2\text{H}_5\text{I} > \text{C}_3\text{H}_7\text{I}$

10. Relative reactivity of alkyl halides for same alkyl group is $\text{RI} > \text{RBr} > \text{RCl} > \text{RF}$

CHAPTER - ALCOHOL, PHENOL AND ETHER


Quick Review

1. Alcohols give red colour with ceric ammonium nitrate but phenol does not.
2. Phenol gives violet colour with FeCl_3 , but alcohols do not.
3. Primary, secondary, and tertiary alcohols are distinguished by Lucas test and Victor Meyer test.
4. For Lucas reagent reactivity lies in following sequence.

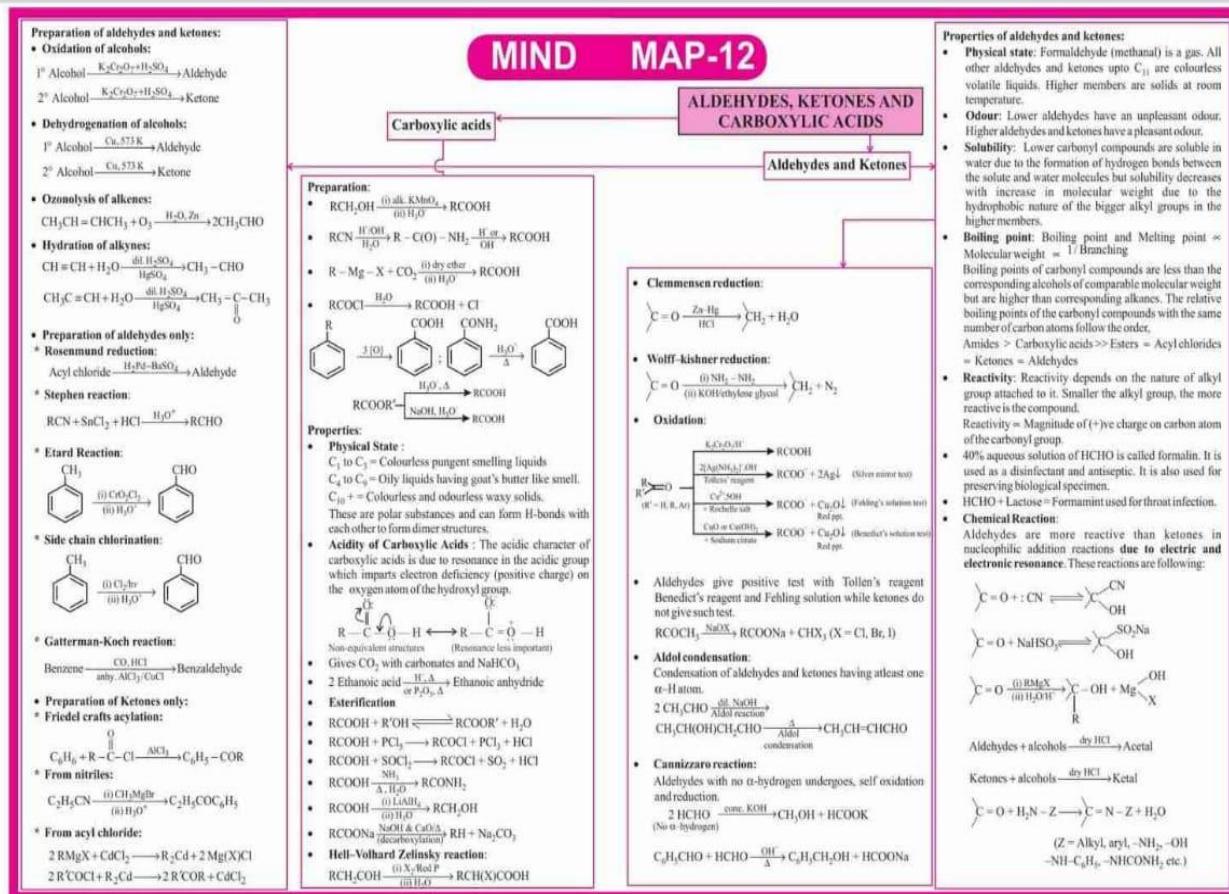


(turbidity Shows immediate) (Turbidity within 5 min) (Turbidity after long time on heating)

5. Methanol and ethanol are distinguished by iodoform test. Ethanol gives yellow residue of iodoform on treatment with I_2 and NaOH . However, methanol does not give this test.
6. Alcohol and phenol both are synthesized by nucleophilic substitution of alkyl and aryl halide.

7. Dehydrogenation of 1° alcohols give aldehyde while 2° alcohols give ketone, it takes place on heating with copper metal at 300°C . Tertiary alcohols have no α -hydrogen hence they undergo dehydration at the place of dehydrogenation.

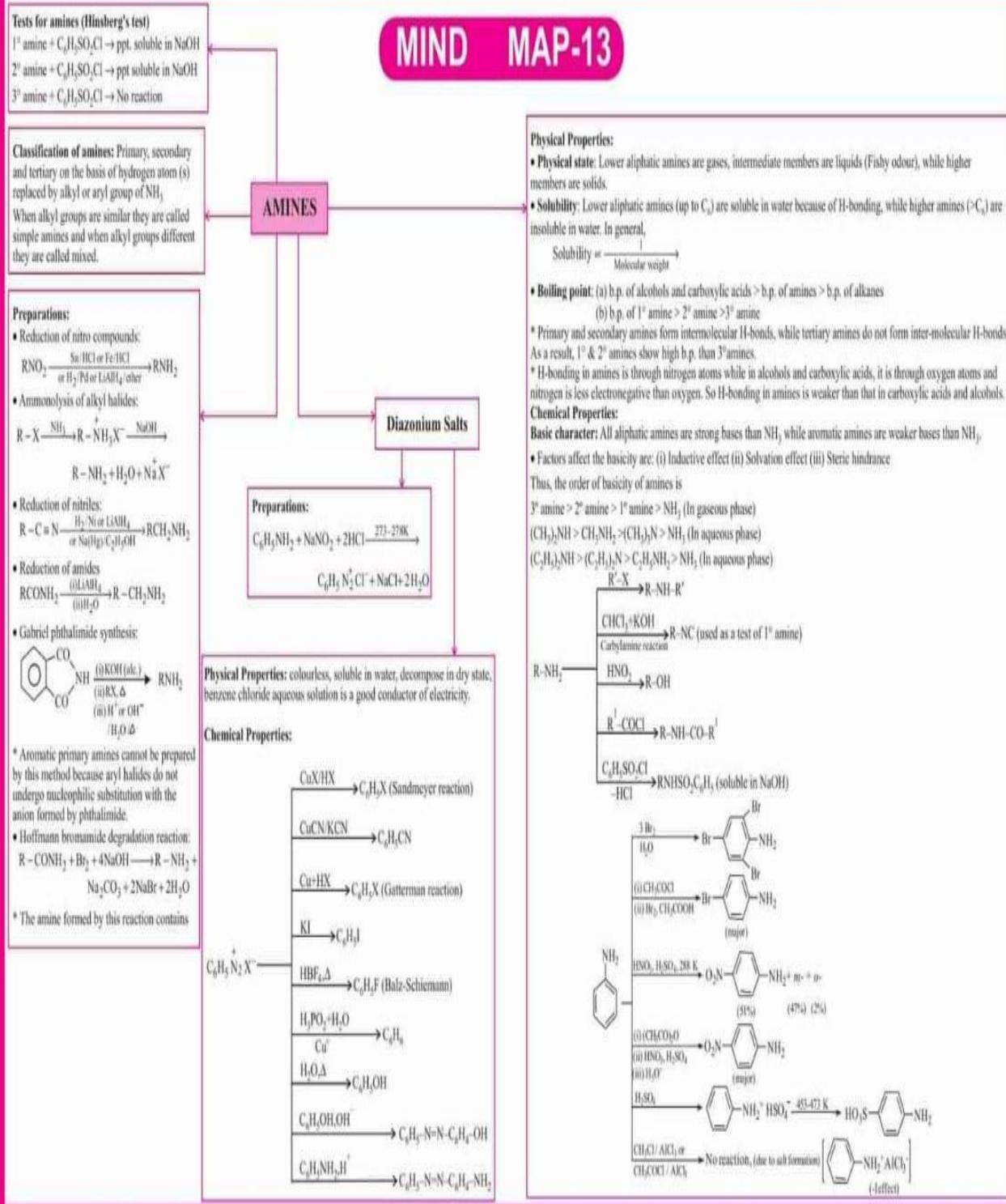
CHAPTER - ALDEHYDE KETONE AND CARBOXYLIC ACID


Quick revision

- Both Aldehydes and Ketones are carbonyl compounds. Carbonyl carbon lies in sp^2 -hybrid state. Similarly in carboxylic acids also the carbon of carboxylic group lies in sp^2 -hybrid state.
- Aldehydes and ketones are synthesized by oxidation of 1° and 2° alcohol respectively, which are further oxidised to form carboxylic acids.
- Aldehydes and ketones are also synthesized by following methods:**
 - Pyrolysis of carboxylic acids.
 - Dry distillation of calcium salts of acids.
 - Reductive hydrolysis of cyanides give aldehyde and the reaction is called Stephen's reaction.
 - Reaction of Grignard reagent with alkyl cyanide followed by acid hydrolysis gives carbonyl compound.
 - Reduction of acid halides with H_2 in presence of Lindlar's catalyst gives aldehyde.
- Aromatic aldehydes and ketones are synthesised by following specific methods:**
 - Partial oxidation of Toluene in presence of chromyl chloride and acetic acid gives benzaldehyde. It is called Etard reaction.
 - In Gattermann Koch aldehyde synthesis, benzaldehyde is obtained by reaction of benzene with carbon mono oxide in presence of HCl and $AlCl_3$.
 - Aromatic ketones like acetophenone and benzophenone are obtained by Friedel Crafts acylation.

iv) In Gattermann aldehyde synthesis, benzaldehyde is obtained when benzene is treated with HCN and HCl, followed by hydrolysis.

- Aldehydes and ketones are more reactive than carboxylic group towards nucleophile. It is because the positive charge of carboxylic carbon is reduced by resonance.
- Aromatic aldehydes and ketones are less reactive than aliphatic aldehydes and ketones because positive charge of carbonyl carbon is reduced in aromatic aldehydes and ketones due to resonance.
- Aldehydes and ketones when reduced in following conditions we get hydrocarbons:
- (a) Clemmensen reduction: Zn/Hg conc. HCl (Reducing agent)
- (b) Wolf Kishner reduction: NH₂-NH₂ (NaOH aq)
- (c) Red P/HI: Strong reducing agent.
- In presence of mild reducing agents like LiAlH₄, NaBH₄, H₂/Pd, Ni etc. the aldehydes and ketones are reduced to primary alcohol and secondary alcohol respectively.
- Aldehydes and ketones having (CH₃CO-) group give yellow residue of iodoform, when treated with I₂ in presence of NaOH.
- Aldehydes give positive test to Tollen's reagent and Fehling's solution but ketones do not give any response to these reagents:
 - i) HCN ii) NaHSO₃ iii) NH₂OH iv) NH₂-NH₂ v) C₆H₅NHNH₂ vi) 2,4-Dinitrophenyl hydrazine vii) NH₂CONHNH₂ Semicarbazide


12

CHAPTER - ORGANIC COMPOUNDS CONTAINING NITROGEN COMPOUNDS

13

MIND MAP-13

Quick Overview

Amines are organic compounds that are produced from ammonia (NH_3) in which alkyl or aryl groups have taken the place of one or more hydrogen atoms. A classifier for amines is the number of substituents on nitrogen; 1° , 2° , or 3° indicates a primary amine. Depending on the type of carbon chain that is joined to the nitrogen atom, they can be either aromatic or aliphatic. Because nitrogen has a single pair of electrons that can take protons, amines have basic characteristics. The type of the solvent and substituents affects how basic they are.

Here are some important points about organic compounds containing nitrogen:

- **Nitriles**

These molecules have a triple bond between nitrogen and carbon, making them highly unsaturated. Nitriles are versatile and can act as electrophiles in reactions like nucleophilic addition or substitution.

- **Carbylamine reaction**

This reaction is used to identify primary amines. When primary amines are heated with chloroform and ethanolic potassium hydroxide, carbylamines are formed. These carbylamines have an unpleasant odor.

- **Diazonium compounds**

Also known as diazonium salts, these compounds have the functional group RN^+2X , where R can be any chemical group and X is halogen.

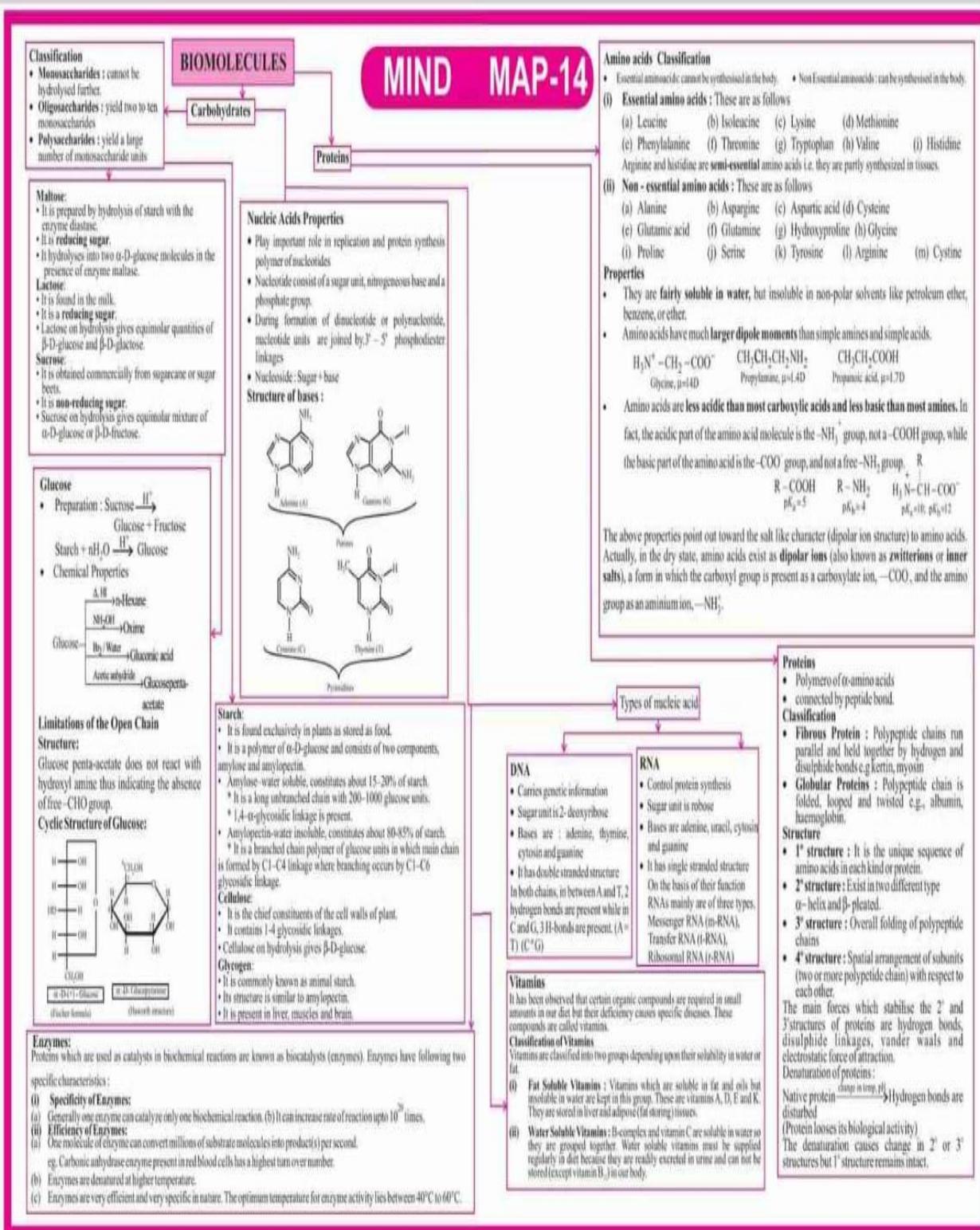
- **Hofmann bromamide reaction**

Also known as Hofmann's Rearrangement, this reaction is used to convert amides into primary amines.

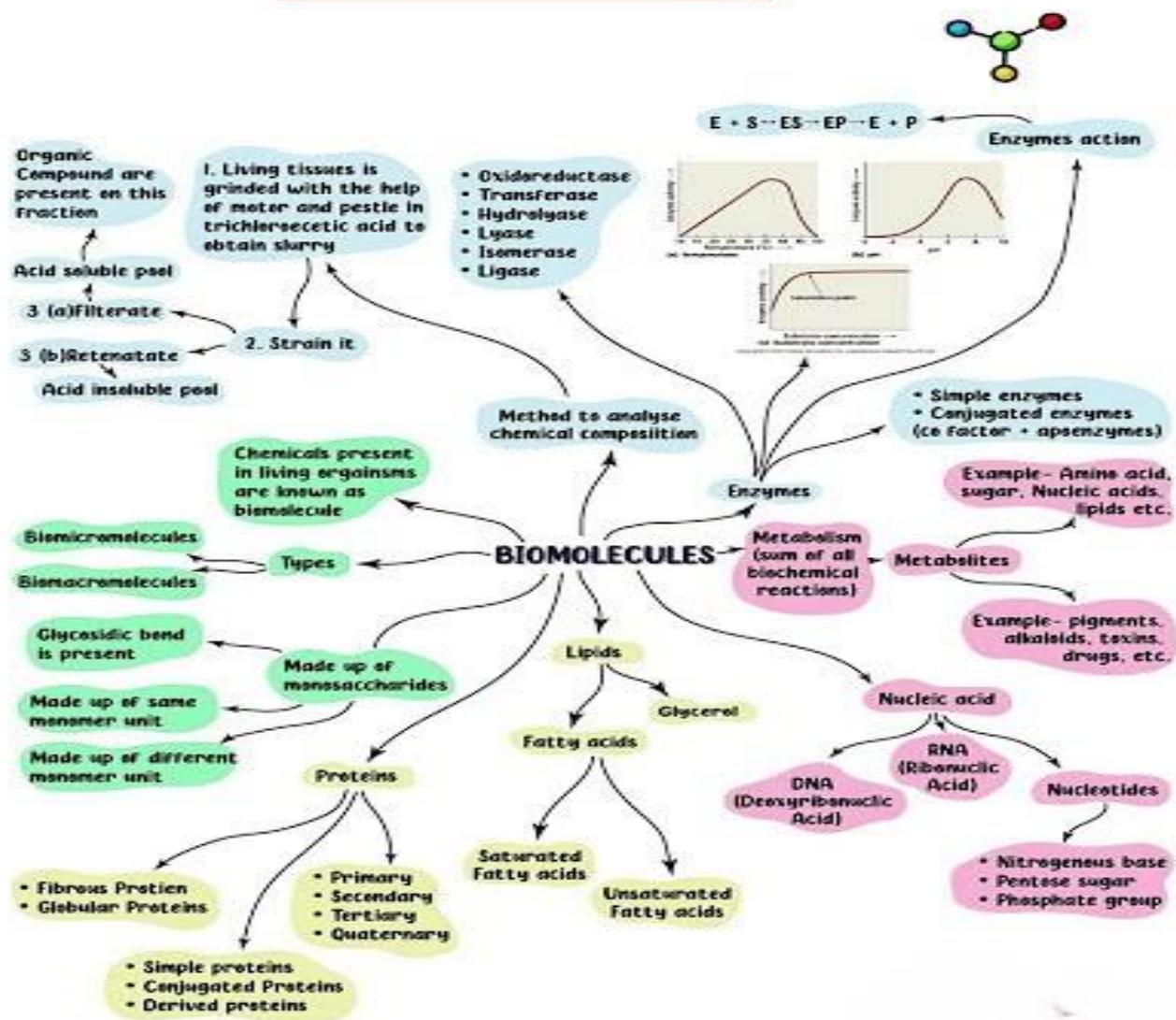
- **Amino acids**

These organic molecules contain both an amino group ($-\text{NH}_2$) and a carboxyl group ($-\text{COOH}$). They are the building blocks of proteins.

- **Organic compounds**


These are important constituents of many products, including paint, food, plastic, explosives, medicine, petrochemicals, and pesticides.

Other organic compounds containing nitrogen include:


- Amines
- Amino alcohols
- Amides and lactams
- Nitro compounds
- Imines
- Hydrazides
- Carbazides
- Oximes
- Heterocyclic compounds such as imidazole, triazole, and tetrazole

CHAPTER – BIOMOLECULES

14

Mind Map: Biomolecules

KEY POINTS

Biomolecules are the organic substances that constitute the building blocks of life; they are in charge of the development and upkeep of living systems.

The sequence that relates biomolecules to living organism is

Biomolecules → Organelles → Cells → Tissues → Organs → Living organism.

6. Carbohydrates

Carbohydrates are optically active polyhydroxy aldehydes (aldoses), ketones (ketoses), or chemicals that hydrolyse to produce these units. There are three types of carbohydrates, based on how they behave when hydrolysed

Monosaccharides, Oligosaccharides, Polysaccharides

7. Proteins: Classification on the Basis of Hydrolysis Products

(i) **Simple** These yield only α -amino acids upon hydrolysis.

e.g., albumin.

(ii) **Conjugated proteins** These yield α -amino acids and non-protein part, called prosthetic group.

Protein Prosthetic group

Nucleoproteins Nucleic acid

Phospho proteins Phosphoric acid

Glycoproteins Carbohydrates

Metalloproteins Metals

(iii) **Derived proteins** These are obtained by partial hydrolysis of simple or conjugated proteins.

Proteins → Proteoses → Peptones → Polypeptides

8. Enzymes

Some Common Enzyme

Name	Substrate	Products
Urease	Urea	CO_{2} + NH_3
Maltase	Maltose	Glucose
Invertase	Sucrose	Glucose + fructose
Amylase	Starch	Maltose
Trypsin	Proteins	Amino acids
Ascorbic acid oxidase	Ascorbic acid	Dehydroascorbic acid

9. **DNA and RNA:** Polynucleotides known as nucleic acids are found in live cells, bacterial cells devoid of a nucleus, and virus-free cells.

Comprehension based questions:

1. Carbohydrates are optically active polyhydroxy aldehydes and ketones. They are also called saccharides. All those carbohydrates which reduce Fehling's solution and Tollen's reagent are referred to as reducing sugars. Glucose, the most important source of energy for mammals, is obtained by the hydrolysis of starch. Vitamins are accessory food factors required in the diet. Proteins are the polymers of amino acids and perform various structural and dynamic functions in the organisms. Deficiency of vitamins leads to many diseases.

Read the given passage carefully and give the answer of the following questions:

Q1. What are reducing sugars?

Q2. What is the basic structural unit of proteins?

Q3. Define Glycosidic linkage as related to carbohydrates.

Q4. Name the disease caused by deficiency of vitamin C.

Q5. What is the food reserve in plants?

2. Vitamins are a group of biomolecules that are essential for maintaining good health. They are organic compounds that are not produced by the body in sufficient amounts, so they must be obtained through the diet. Vitamins can be classified into two main categories: fat-soluble and water-soluble. Fat-soluble vitamins, such as vitamins A, D, E, and K, are stored in fatty tissues and liver, while water-soluble vitamins, such as vitamins B and C, are not stored in the body and excess amounts are excreted in the urine. Vitamins play a crucial role in various bodily functions, including energy production, immune function, and bone health.

1. What is the primary function of vitamins in the body?
2. How are vitamins classified?
3. What is the difference between fat-soluble and water-soluble vitamins?
4. Which vitamin is essential for bone health?
5. What is the chemical name of vitamin A?

3. Enzymes are biological catalysts that speed up chemical reactions in living organisms. They are highly specific, meaning they only catalyse one specific reaction or a small group of related reactions. Enzymes have an active site, which is the region of the enzyme where the substrate binds and the reaction takes place. The shape and chemical properties of the active site determine the specificity of the enzyme.

1. What is the primary function of enzymes in living organisms?
2. What is meant by the specificity of an enzyme?
3. What is the role of the active site in enzyme function?
4. How do enzymes speed up chemical reactions?
5. What is the significance of enzyme inhibition in living organisms?

4. Nucleotides are biomolecules composed of a nitrogenous base, a sugar molecule, and one or more phosphate groups. They serve as the building blocks of nucleic acids, including DNA and RNA. Adenine (A), guanine (G), cytosine (C), and thymine (T) are the four nitrogenous bases found in DNA, while RNA contains the base uracil (U) instead of thymine.

1. What are the three components of a nucleotide?
2. What is the role of nucleotides in the structure of nucleic acids?
3. What is the difference between the nitrogenous bases found in DNA and RNA?
4. How do nucleotides link together to form nucleic acids?
5. What is the significance of nucleic acids in living organisms?

5. Starch is a complex carbohydrate composed of long chains of glucose molecules. It is the primary energy storage molecule in plants and is found in high concentrations in seeds, tubers, and roots. Starch is composed of two main components: amylose and amylopectin. Amylose is a linear chain of glucose molecules, while amylopectin is a branched chain of glucose molecules. Starch is broken down into glucose during digestion, which is then absorbed and utilized by the body for energy.

1. What is the primary function of starch in plants?
2. What are the two main components of starch?
3. What is the difference between amylose and amylopectin?
4. How is starch broken down during digestion?
5. What is the significance of starch in the human diet?

6. There are three macro nutrients, carbohydrates, protein and fats. The three macronutrients all have their own specific roles and functions in the body and supply us with calories or energy. For their reason, the body requires these nutrients in relatively large amount to grow, develop and repair. All macronutrients must be obtained through diet, the body cannot produce macronutrients on its own.

- Q. 1. List some important sources of proteins.
- Q.2. Why are proteins required?
- Q.3. What are the three macronutrients?
- Q. 4. Define carbohydrates.
- Q. 5. List some important source of carbohydrate.

7 .Proteins are large, complex molecules that play may critical roles in our body. They do most of the work in cell and are required for the structure, function and regulation of the body's tissues and organs. Proteins are made up of hundreds or thousands of smaller units called amino acids, which are attached to one another in long chain. There are 20 different types of amino acids that can be combined to make a protein. The sequence of amino acids determines each protein unique 3-dimensional structure and its specific functions.

- Q.1. Are proteins polymers?
- Q2. Give two examples of denaturation of proteins.
- Q3. What do you mean by primary structure of Proteins?
- Q.4.What are non-essential amino acids?
- Q 5 By which linkage amino acids are linked in a protein?

8. Carbohydrates are polyhydroxy aldehydes and ketones and those compounds which on hydrolysis give such compounds are also carbohydrates. The carbohydrates which are not hydrolysed are called monosaccharides. Monosaccharides with aldehydic group are called aldoses and those which free ketonic groups are called ketoses. Carbohydrates are optically active. Number of optical isomers = 2^n . Where n = number of asymmetric carbons. Carbohydrates mainly synthesised by plants during photosynthesis. The monosaccharides give the characteristic reactions of alcohols and carbonyl group (aldehydes and ketones). It has been found that these monosaccharides exist in the form of cyclic structures. In cyclization, the - OH groups (generally C5 or C6 in aldohexoses and C5 or C6 in ketohexoses) combine with the aldehyde or keto group. As a result, cyclic structures of five or six membered rings containing one oxygen atom are formed, eg. glucose forms a ring structure, Glucose contains one aldehyde group, one 1° alcoholic group and four 2° alcoholic groups in its open chain structure.

- Q1. What are carbohydrates?
- Q2. What are monosaccharides?
- Q3. What are aldoses?
- Q4. How many chiral or asymmetric carbon atoms are there in glucose molecule?
- Q. 5. Give the formula to calculate the number of optical isomers.

An initiative of SCERT Punjab

Prepared By : State Resource Team Chemistry Punjab
School Education Department

SAMPLE PAPER – 2026 (10+2 CHEMISTRY)

TOTAL MARKS=70

TIME=3HR

1. Questions carrying one-mark MCQ

- i. A colligative property of a solution depends on the
 - (a) Number of solute particles
 - (c) Total number of solute and solvent molecule
 - (b) Number of atoms in solute molecules
 - (d) mass of solute particles
- ii. The molal elevation constant depends upon
 - (a) nature of solute
 - (b) nature of the solvent
 - (c) vapour pressure of the solution
 - (d) enthalpy change
- iii. The number of moles of NaCl in 3 litres of 3M solution is:
 - (a) 1
 - (b) 3
 - (c) 9
 - (d) 27
- iv. Rusting of iron is quicker in
 - (a) Saline water
 - (b) Ordinary water
 - (c) Distilled water
 - (d) All of these
- v. The unit of rate constant for a zero order reaction is
 - (a) mol L⁻¹s⁻¹
 - (b) s⁻¹
 - (c) L mol⁻¹ s⁻¹
 - (d) L²mol⁻²s
- vi. What kind of isomerism exist between [Cr(H₂O)₆]Cl₃ and [Cr(H₂O)₅Cl]Cl₂.H₂O:
 - (a) Linkage isomerism
 - (c) Ionisation isomerism
 - (b) Solvate isomerism
 - (d) Coordination isomerism
- vii. Haloarenes are less reactive than haloalkanes due to
 - (a) Resonance Effect
 - (b) Difference in hybridisation state of carbon atoms
 - (c) both a and b
 - (d) None of these
- viii. Which of the following reactions will not result in the formation of C-C bond?
 - (a) Cannizzaro Reaction
 - (c) Reimer-Tiemann Reaction
 - (b) Wurtz Reaction
 - (d) Friedal Crafts Reaction
- ix. The strongest acid among the following compound is.
 - (a) HCOOH
 - (b) CH₃COOH
 - (c) (CH₃)₃CHCOOH
 - (d) (CH₃)₃CCOOH
- x. Which of the following do not give aldol condensation reactions?
 - (a) Formaldehyde
 - (b) Acetaldehyde
 - (c) Dimethylketone
 - (d) Propionaldehyde

TRUE/FALSE

- xi. Aldehydes and ketones react with electrophiles but not with nucleophiles .
- xii. Wolff Kishner reduction of acetophenone gives toluene
- xiii. Phenol have higher boiling than toluene
- xiv. [Fe(CO)₅] is most stable because CO is weak field ligand.
- xv. The energy difference between the two sets of *d*-orbitals is called crystal field splitting energy denoted by Δ_0

COMPREHENSION

When a protein in its native form, is subjected to physical changes like change in temperature or chemical changes like change in pH, the hydrogen bonds are disturbed. Due to this, globules unfold and helix get uncoiled and protein loses its biological activity. This is called denaturation of protein. The denaturation causes change in secondary and tertiary structures but primary structures remains intact. Examples of denaturation of protein are coagulation of egg white on boiling, curding of milk, formation of cheese when an acid is added to milk.

- (xvi) What is denaturation of protein?
- (xvii) Give examples of denaturation of protein?
- (xviii) Primary structures remain during denaturation of protein.
- (xix) The denaturation of protein causes change in structure.
- (xx) During denaturation protein loses its activity

SECTION-B QUESTIONS CARRYING TWO MARKS

2. Which colligative property is preferred to measure molar mass.

3. Calculate the mole fraction of ethanol and water in a sample which contain 95% ethanol by mass? Or
A commercially available sample of sulphuric acid is 38% HCl by weight (density = 1.19 g ml⁻¹)

.Calculate Molarity of acid

4. Calculate half life of a first order reaction having $K = 4.93 \times 10^{-4} \text{ s}^{-1}$. Or

Calculate two third life a first order reaction having $K = 5.48 \times 10^{-14} \text{ s}^{-1}$

5. Define the Pseudo first order reaction. Give its example

6. Define cell constant and write their units..

7. Define Ambident ligands ?

8. Write short note on coupling reaction. Or

Ethers possess a dipole moment even if the alkyl radicals in the molecule are identical. Explain

9. What is formalin solution give its one use ? Or

How does $>\text{C}=\text{C}<$ differ from $>\text{C}=\text{O}$ group in Chemical reactions.

10. What is carbylamine reaction ?

11. What is the chemical name of Vitamin A and which disease is caused by its deficiency ?

12. Give one example of Gattermann reaction.

13. Write difference between Weak field ligand and Strong field ligand

14. Why is Cu considered as transition metal ?

15. Conductivity of 0.00214 M acetic acid is $7.8 \times 10^{-5} \text{ S cm}^{-1}$. (i) Calculate its molar conductivity. Given that $\text{cm}^2 \text{ mol}^{-1}$. (ii) Calculate degree of dissociation.

SECTION-CQUESTIONS CARRYING THREE MARKS

16. A cell reaction is $\text{Mg}(\text{s}) \mid \text{Mg}^{2+}_{(0.001\text{M})} \text{ // } \text{Cu}^{2+}_{(0.000\text{M})} \text{ / Cu}(\text{s})$. Calculate E_{cell} of a reaction and also write Nernst equation. Given: $E^{\circ}(\text{Mg}^{2+} \mid \text{Mg}) = -2.37 \text{ V}$ and $E^{\circ}(\text{Cu}^{2+} \mid \text{Cu}) = 0.34 \text{ V}$. Or

A cell reaction is $\text{Sn}(\text{s}) \mid \text{Sn}^{2+}_{(0.50\text{M})} \text{ // } \text{H}^{+}_{(0.020\text{M})} \text{ / H}_2(\text{g})$. Calculate E_{cell} of a reaction and also write Nernst equation.
Given : $E^{\circ}(\text{Sn}^{2+} \mid \text{Sn}) = -0.14 \text{ V}$ and $E^{\circ}(\text{H}^{+} \mid \text{H}) = 0.00 \text{ V}$.

17. A first order is completed 50% in 30 minutes. How much time it will take to complete 75% of the reaction?

18. Why is C – O – C bond angle in ether is more than H – O – H bond angle in water though oxygen atom is sp^3 hybridised in both the cases ? Or

Write the Lucas test to distinguish between 1°, 2° and 3° alcohols

1. Write a Hinsberg's test to distinguish between 1°, 2° and 3° amines.

SECTION-DQUESTIONS CARRYING FIVE MARKS

20. (How would you account for the following? (i) Transition metals exhibit variable oxidation states. (ii) Zr (Z = 40) and Hf (Z = 72) have almost identical radii. (iii) Transition metals and their compounds act as catalyst. Or

Give reasons : (a) E° value for $\text{Mn}^{3+}/\text{Mn}^{2+}$ couple is much more positive than that for $\text{Fe}^{3+}/\text{Fe}^{2+}$. (b) Iron has higher enthalpy of atomization than that of copper. (c) Sc^{3+} is colourless in aqueous solution whereas Ti^{3+} is coloured .

21. Explain the following reactions:(i) Fittig reaction (ii) Sulphonation of haloarene
(iii) Hunsdicker reaction (iv) Nitration of haloarene (v) Wurtz reaction (1X5=5) Or
(i) Difference between Haloalkane and Haloarenes. (3)
(ii) What is Iodoform Test ? (2)
(ii). Give two uses of chloroform.